Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
bioRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38659894

RESUMO

CRISPR epigenomic editing technologies enable functional interrogation of non-coding elements. However, current computational methods for guide RNA (gRNA) design do not effectively predict the power potential, molecular and cellular impact to optimize for efficient gRNAs, which are crucial for successful applications of these technologies. We present "launch-dCas9" (machine LeArning based UNified CompreHensive framework for CRISPR-dCas9) to predict gRNA impact from multiple perspectives, including cell fitness, wild-type abundance (gauging power potential), and gene expression in single cells. Our launch-dCas9, built and evaluated using experiments involving >1 million gRNAs targeted across the human genome, demonstrates relatively high prediction accuracy (AUC up to 0.81) and generalizes across cell lines. Method-prioritized top gRNA(s) are 4.6-fold more likely to exert effects, compared to other gRNAs in the same cis-regulatory region. Furthermore, launch-dCas9 identifies the most critical sequence-related features and functional annotations from >40 features considered. Our results establish launch-dCas9 as a promising approach to design gRNAs for CRISPR epigenomic experiments.

2.
Nat Commun ; 15(1): 1955, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438373

RESUMO

Clinical translation of AAV-mediated gene therapy requires preclinical development across different experimental models, often confounded by variable transduction efficiency. Here, we describe a human liver chimeric transgene-free Il2rg-/-/Rag2-/-/Fah-/-/Aavr-/- (TIRFA) mouse model overcoming this translational roadblock, by combining liver humanization with AAV receptor (AAVR) ablation, rendering murine cells impermissive to AAV transduction. Using human liver chimeric TIRFA mice, we demonstrate increased transduction of clinically used AAV serotypes in primary human hepatocytes compared to humanized mice with wild-type AAVR. Further, we demonstrate AAV transduction in human teratoma-derived primary cells and liver cancer tissue, displaying the versatility of the humanized TIRFA mouse. From a mechanistic perspective, our results support the notion that AAVR functions as both an entry receptor and an intracellular receptor essential for transduction. The TIRFA mouse should allow prediction of AAV gene transfer efficiency and the study of AAV vector biology in a preclinical human setting.


Assuntos
Dependovirus , Fígado , Humanos , Animais , Camundongos , Dependovirus/genética , Modelos Animais de Doenças , Terapia Genética , Hepatócitos
3.
Nat Methods ; 21(4): 723-734, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38504114

RESUMO

The ENCODE Consortium's efforts to annotate noncoding cis-regulatory elements (CREs) have advanced our understanding of gene regulatory landscapes. Pooled, noncoding CRISPR screens offer a systematic approach to investigate cis-regulatory mechanisms. The ENCODE4 Functional Characterization Centers conducted 108 screens in human cell lines, comprising >540,000 perturbations across 24.85 megabases of the genome. Using 332 functionally confirmed CRE-gene links in K562 cells, we established guidelines for screening endogenous noncoding elements with CRISPR interference (CRISPRi), including accurate detection of CREs that exhibit variable, often low, transcriptional effects. Benchmarking five screen analysis tools, we find that CASA produces the most conservative CRE calls and is robust to artifacts of low-specificity single guide RNAs. We uncover a subtle DNA strand bias for CRISPRi in transcribed regions with implications for screen design and analysis. Together, we provide an accessible data resource, predesigned single guide RNAs for targeting 3,275,697 ENCODE SCREEN candidate CREs with CRISPRi and screening guidelines to accelerate functional characterization of the noncoding genome.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , RNA Guia de Sistemas CRISPR-Cas , Genoma , Células K562
4.
bioRxiv ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38496583

RESUMO

Epigenome editing with DNA-targeting technologies such as CRISPR-dCas9 can be used to dissect gene regulatory mechanisms and potentially treat associated disorders. For example, Prader-Willi Syndrome (PWS) is caused by loss of paternally expressed imprinted genes on chromosome 15q11.2-q13.3, although the maternal allele is intact but epigenetically silenced. Using CRISPR repression and activation screens in human induced pluripotent stem cells (iPSCs), we identified genomic elements that control expression of the PWS gene SNRPN from the paternal and maternal chromosomes. We showed that either targeted transcriptional activation or DNA demethylation can activate the silenced maternal SNRPN and downstream PWS transcripts. However, these two approaches function at unique regions, preferentially activating different transcript variants and involving distinct epigenetic reprogramming mechanisms. Remarkably, transient expression of the targeted demethylase leads to stable, long-term maternal SNRPN expression in PWS iPSCs. This work uncovers targeted epigenetic manipulations to reprogram a disease-associated imprinted locus and suggests possible therapeutic interventions.

5.
bioRxiv ; 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38260455

RESUMO

Epigenetic control of cellular transcription and phenotype is influenced by changes in the cellular microenvironment, yet how mechanical cues from these microenvironments precisely influence epigenetic state to regulate transcription remains largely unmapped. Here, we combine genome-wide epigenome profiling, epigenome editing, and phenotypic and single-cell RNA-seq CRISPR screening to identify a new class of genomic enhancers that responds to the mechanical microenvironment. These 'mechanoenhancers' could be active on either soft or stiff extracellular matrix contexts, and regulated transcription to influence critical cell functions including apoptosis, mechanotransduction, proliferation, and migration. Epigenetic editing of mechanoenhancers on rigid materials tuned gene expression to levels observed on softer materials, thereby reprogramming the cellular response to the mechanical microenvironment. These editing approaches may enable the precise alteration of mechanically-driven disease states.

6.
Nat Genet ; 55(12): 2211-2223, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37945901

RESUMO

Clinical response to adoptive T cell therapies is associated with the transcriptional and epigenetic state of the cell product. Thus, discovery of regulators of T cell gene networks and their corresponding phenotypes has potential to improve T cell therapies. Here we developed pooled, epigenetic CRISPR screening approaches to systematically profile the effects of activating or repressing 120 transcriptional and epigenetic regulators on human CD8+ T cell state. We found that BATF3 overexpression promoted specific features of memory T cells and attenuated gene programs associated with cytotoxicity, regulatory T cell function, and exhaustion. Upon chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. Moreover, BATF3 enhanced the potency of CAR T cells in both in vitro and in vivo tumor models and programmed a transcriptional profile that correlates with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens that defined cofactors and downstream mediators of the BATF3 gene network.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Linfócitos T CD8-Positivos , Epigênese Genética
7.
APL Bioeng ; 7(4): 046103, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37854060

RESUMO

Atherosclerosis is a primary precursor of cardiovascular disease (CVD), the leading cause of death worldwide. While proprotein convertase subtilisin/kexin 9 (PCSK9) contributes to CVD by degrading low-density lipoprotein receptors (LDLR) and altering lipid metabolism, PCSK9 also influences vascular inflammation, further promoting atherosclerosis. Here, we utilized a vascular microphysiological system to test the effect of PCSK9 activation or repression on the initiation of atherosclerosis and to screen the efficacy of a small molecule PCSK9 inhibitor. We have generated PCSK9 over-expressed (P+) or repressed (P-) human induced pluripotent stem cells (iPSCs) and further differentiated them to smooth muscle cells (viSMCs) or endothelial cells (viECs). Tissue-engineered blood vessels (TEBVs) made from P+ viSMCs and viECs resulted in increased monocyte adhesion compared to the wild type (WT) or P- equivalents when treated with enzyme-modified LDL (eLDL) and TNF-α. We also found significant viEC dysfunction, such as increased secretion of VCAM-1, TNF-α, and IL-6, in P+ viECs treated with eLDL and TNF-α. A small molecule compound, NYX-1492, that was originally designed to block PCSK9 binding with the LDLR was tested in TEBVs to determine its effect on lowering PCSK9-induced inflammation. The compound reduced monocyte adhesion in P+ TEBVs with evidence of lowering secretion of VCAM-1 and TNF-α. These results suggest that PCSK9 inhibition may decrease vascular inflammation in addition to lowering plasma LDL levels, enhancing its anti-atherosclerotic effects, particularly in patients with elevated chronic inflammation.

8.
ACS Nano ; 17(17): 16412-16431, 2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37582231

RESUMO

The complexity of CRISPR machinery is a challenge to its application for nonviral in vivo therapeutic gene editing. Here, we demonstrate that proteins, regardless of size or charge, efficiently load into porous silicon nanoparticles (PSiNPs). Optimizing the loading strategy yields formulations that are ultrahigh loading─>40% cargo by volume─and highly active. Further tuning of a polymeric coating on the loaded PSiNPs yields nanocomposites that achieve colloidal stability under cryopreservation, endosome escape, and gene editing efficiencies twice that of the commercial standard Lipofectamine CRISPRMAX. In a mouse model of arthritis, PSiNPs edit cells in both the cartilage and synovium of knee joints, and achieve 60% reduction in expression of the therapeutically relevant MMP13 gene. Administered intramuscularly, they are active over a broad dose range, with the highest tested dose yielding nearly 100% muscle fiber editing at the injection site. The nanocomposite PSiNPs are also amenable to systemic delivery. Administered intravenously in a model that mimics muscular dystrophy, they edit sites of inflamed muscle. Collectively, the results demonstrate that the PSiNP nanocomposites are a versatile system that can achieve high loading of diverse cargoes and can be applied for gene editing in both local and systemic delivery applications.


Assuntos
Sistemas CRISPR-Cas , Nanopartículas , Camundongos , Animais , Sistemas CRISPR-Cas/genética , Silício , Porosidade , Polímeros
9.
bioRxiv ; 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37205457

RESUMO

The clinical response to adoptive T cell therapies is strongly associated with transcriptional and epigenetic state. Thus, technologies to discover regulators of T cell gene networks and their corresponding phenotypes have great potential to improve the efficacy of T cell therapies. We developed pooled CRISPR screening approaches with compact epigenome editors to systematically profile the effects of activation and repression of 120 transcription factors and epigenetic modifiers on human CD8+ T cell state. These screens nominated known and novel regulators of T cell phenotypes with BATF3 emerging as a high confidence gene in both screens. We found that BATF3 overexpression promoted specific features of memory T cells such as increased IL7R expression and glycolytic capacity, while attenuating gene programs associated with cytotoxicity, regulatory T cell function, and T cell exhaustion. In the context of chronic antigen stimulation, BATF3 overexpression countered phenotypic and epigenetic signatures of T cell exhaustion. CAR T cells overexpressing BATF3 significantly outperformed control CAR T cells in both in vitro and in vivo tumor models. Moreover, we found that BATF3 programmed a transcriptional profile that correlated with positive clinical response to adoptive T cell therapy. Finally, we performed CRISPR knockout screens with and without BATF3 overexpression to define co-factors and downstream factors of BATF3, as well as other therapeutic targets. These screens pointed to a model where BATF3 interacts with JUNB and IRF4 to regulate gene expression and illuminated several other novel targets for further investigation.

10.
Cell Stem Cell ; 30(1): 96-111.e6, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36516837

RESUMO

The efficacy and safety of gene-therapy strategies for indications like tissue damage hinge on precision; yet, current methods afford little spatial or temporal control of payload delivery. Here, we find that tissue-regeneration enhancer elements (TREEs) isolated from zebrafish can direct targeted, injury-associated gene expression from viral DNA vectors delivered systemically in small and large adult mammalian species. When employed in combination with CRISPR-based epigenome editing tools in mice, zebrafish TREEs stimulated or repressed the expression of endogenous genes after ischemic myocardial infarction. Intravenously delivered recombinant AAV vectors designed with a TREE to direct a constitutively active YAP factor boosted indicators of cardiac regeneration in mice and improved the function of the injured heart. Our findings establish the application of contextual enhancer elements as a potential therapeutic platform for spatiotemporally controlled tissue regeneration in mammals.


Assuntos
Elementos Facilitadores Genéticos , Terapia Genética , Coração , Infarto do Miocárdio , Miócitos Cardíacos , Regeneração , Animais , Camundongos , Proliferação de Células , Coração/fisiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Miócitos Cardíacos/metabolismo , Peixe-Zebra/genética , Terapia Genética/métodos , Regeneração/genética
11.
Nat Commun ; 13(1): 5947, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36210364

RESUMO

Recombinant adeno-associated viral (AAV) vectors are a promising gene delivery platform, but ongoing clinical trials continue to highlight a relatively narrow therapeutic window. Effective clinical translation is confounded, at least in part, by differences in AAV biology across animal species. Here, we tackle this challenge by sequentially evolving AAV capsid libraries in mice, pigs and macaques. We discover a highly potent, cross-species compatible variant (AAV.cc47) that shows improved attributes benchmarked against AAV serotype 9 as evidenced by robust reporter and therapeutic gene expression, Cre recombination and CRISPR genome editing in normal and diseased mouse models. Enhanced transduction efficiency of AAV.cc47 vectors is further corroborated in macaques and pigs, providing a strong rationale for potential clinical translation into human gene therapies. We envision that ccAAV vectors may not only improve predictive modeling in preclinical studies, but also clinical translatability by broadening the therapeutic window of AAV based gene therapies.


Assuntos
Dependovirus , Edição de Genes , Animais , Dependovirus/metabolismo , Terapia Genética , Vetores Genéticos/genética , Humanos , Macaca/genética , Camundongos , Suínos , Transdução Genética
12.
ACS Nano ; 16(4): 5660-5671, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35357116

RESUMO

Programmable control of gene expression via nuclease-null Cas9 fusion proteins has enabled the engineering of cellular behaviors. Here, both transcriptional and epigenetic gene activation via synthetic mRNA and lipid nanoparticle delivery was demonstrated in vivo. These highly efficient delivery strategies resulted in high levels of activation in multiple tissues. Finally, we demonstrate durable gene activation in vivo via transient delivery of a single dose of a gene activator that combines VP64, p65, and HSF1 with a SWI/SNF chromatin remodeling complex component SS18, representing an important step toward gene-activation-based therapeutics. This induced sustained gene activation could be inhibited via mRNA-encoded AcrIIA4, further improving the safety profile of this approach.


Assuntos
Sistemas CRISPR-Cas , Lipossomos , Ativação Transcricional , RNA Mensageiro/genética , Proteína 9 Associada à CRISPR/genética
13.
Nat Commun ; 12(1): 6769, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34819506

RESUMO

Adeno-associated virus (AAV)-mediated CRISPR-Cas9 editing holds promise to treat many diseases. The immune response to bacterial-derived Cas9 has been speculated as a hurdle for AAV-CRISPR therapy. However, immunological consequences of AAV-mediated Cas9 expression have thus far not been thoroughly investigated in large mammals. We evaluate Cas9-specific immune responses in canine models of Duchenne muscular dystrophy (DMD) following intramuscular and intravenous AAV-CRISPR therapy. Treatment results initially in robust dystrophin restoration in affected dogs but also induces muscle inflammation, and Cas9-specific humoral and cytotoxic T-lymphocyte (CTL) responses that are not prevented by the muscle-specific promoter and transient prednisolone immune suppression. In normal dogs, AAV-mediated Cas9 expression induces similar, though milder, immune responses. In contrast, other therapeutic (micro-dystrophin and SERCA2a) and reporter (alkaline phosphatase, AP) vectors result in persistent expression without inducing muscle inflammation. Our results suggest Cas9 immunity may represent a critical barrier for AAV-CRISPR therapy in large mammals.


Assuntos
Sistemas CRISPR-Cas/imunologia , Terapia Genética/efeitos adversos , Vetores Genéticos/imunologia , Músculo Esquelético/imunologia , Distrofia Muscular de Duchenne/terapia , Animais , Sistemas CRISPR-Cas/genética , Dependovirus/genética , Modelos Animais de Doenças , Cães , Distrofina/genética , Distrofina/imunologia , Edição de Genes/métodos , Genes Reporter/genética , Genes Reporter/imunologia , Terapia Genética/métodos , Vetores Genéticos/administração & dosagem , Humanos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/patologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/imunologia
14.
Mol Ther ; 29(11): 3243-3257, 2021 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-34509668

RESUMO

Targeted gene-editing strategies have emerged as promising therapeutic approaches for the permanent treatment of inherited genetic diseases. However, precise gene correction and insertion approaches using homology-directed repair are still limited by low efficiencies. Consequently, many gene-editing strategies have focused on removal or disruption, rather than repair, of genomic DNA. In contrast, homology-independent targeted integration (HITI) has been reported to effectively insert DNA sequences at targeted genomic loci. This approach could be particularly useful for restoring full-length sequences of genes affected by a spectrum of mutations that are also too large to deliver by conventional adeno-associated virus (AAV) vectors. Here, we utilize an AAV-based, HITI-mediated approach for correction of full-length dystrophin expression in a humanized mouse model of Duchenne muscular dystrophy (DMD). We co-deliver CRISPR-Cas9 and a donor DNA sequence to insert the missing human exon 52 into its corresponding position within the DMD gene and achieve full-length dystrophin correction in skeletal and cardiac muscle. Additionally, as a proof-of-concept strategy to correct genetic mutations characterized by diverse patient mutations, we deliver a superexon donor encoding the last 28 exons of the DMD gene as a therapeutic strategy to restore full-length dystrophin in >20% of the DMD patient population. This work highlights the potential of HITI-mediated gene correction for diverse DMD mutations and advances genome editing toward realizing the promise of full-length gene restoration to treat genetic disease.


Assuntos
Sistemas CRISPR-Cas , Dependovirus/genética , Distrofina/genética , Éxons , Edição de Genes , Vetores Genéticos/genética , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia , Animais , Modelos Animais de Doenças , Expressão Gênica , Ordem dos Genes , Técnicas de Transferência de Genes , Engenharia Genética , Terapia Genética/métodos , Humanos , Camundongos , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Mutação , Miocárdio/metabolismo , Integração Viral
15.
Nat Methods ; 18(8): 965-974, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34341582

RESUMO

CRISPR-Cas9 technologies have dramatically increased the ease of targeting DNA sequences in the genomes of living systems. The fusion of chromatin-modifying domains to nuclease-deactivated Cas9 (dCas9) has enabled targeted epigenome editing in both cultured cells and animal models. However, delivering large dCas9 fusion proteins to target cells and tissues is an obstacle to the widespread adoption of these tools for in vivo studies. Here, we describe the generation and characterization of two conditional transgenic mouse lines for epigenome editing, Rosa26:LSL-dCas9-p300 for gene activation and Rosa26:LSL-dCas9-KRAB for gene repression. By targeting the guide RNAs to transcriptional start sites or distal enhancer elements, we demonstrate regulation of target genes and corresponding changes to epigenetic states and downstream phenotypes in the brain and liver in vivo, and in T cells and fibroblasts ex vivo. These mouse lines are convenient and valuable tools for facile, temporally controlled, and tissue-restricted epigenome editing and manipulation of gene expression in vivo.


Assuntos
Sistemas CRISPR-Cas , Epigênese Genética , Epigenoma , Edição de Genes/métodos , Regulação da Expressão Gênica , Animais , Encéfalo/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Transgênicos , Linfócitos T/metabolismo
16.
Annu Rev Biomed Eng ; 23: 493-516, 2021 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-33909475

RESUMO

The recent discovery and subsequent development of the CRISPR-Cas9 (clustered regularly interspaced short palindromic repeat-CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Materiais Biocompatíveis , Sistemas CRISPR-Cas/genética , Humanos
17.
Nature ; 592(7853): 195-204, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33828315

RESUMO

The move from reading to writing the human genome offers new opportunities to improve human health. The United States National Institutes of Health (NIH) Somatic Cell Genome Editing (SCGE) Consortium aims to accelerate the development of safer and more-effective methods to edit the genomes of disease-relevant somatic cells in patients, even in tissues that are difficult to reach. Here we discuss the consortium's plans to develop and benchmark approaches to induce and measure genome modifications, and to define downstream functional consequences of genome editing within human cells. Central to this effort is a rigorous and innovative approach that requires validation of the technology through third-party testing in small and large animals. New genome editors, delivery technologies and methods for tracking edited cells in vivo, as well as newly developed animal models and human biological systems, will be assembled-along with validated datasets-into an SCGE Toolkit, which will be disseminated widely to the biomedical research community. We visualize this toolkit-and the knowledge generated by its applications-as a means to accelerate the clinical development of new therapies for a wide range of conditions.


Assuntos
Células/metabolismo , Edição de Genes/métodos , Genoma Humano/genética , National Institutes of Health (U.S.)/organização & administração , Animais , Terapia Genética , Objetivos , Humanos , Estados Unidos
19.
Genome Res ; 31(4): 538-550, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33674350

RESUMO

The AP-1 transcription factor (TF) dimer contributes to many biological processes and environmental responses. AP-1 can be composed of many interchangeable subunits. Unambiguously determining the binding locations of these subunits in the human genome is challenging because of variable antibody specificity and affinity. Here, we definitively establish the genome-wide binding patterns of five AP-1 subunits by using CRISPR to introduce a common antibody tag on each subunit. We find limited evidence for strong dimerization preferences between subunits at steady state and find that, under a stimulus, dimerization patterns reflect changes in the transcriptome. Further, our analysis suggests that canonical AP-1 motifs indiscriminately recruit all AP-1 subunits to genomic sites, which we term AP-1 hotspots. We find that AP-1 hotspots are predictive of cell type-specific gene expression and of genomic responses to glucocorticoid signaling (more so than super-enhancers) and are significantly enriched in disease-associated genetic variants. Together, these results support a model where promiscuous binding of many AP-1 subunits to the same genomic location play a key role in regulating cell type-specific gene expression and environmental responses.


Assuntos
Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Fator de Transcrição AP-1/metabolismo , Transcrição Gênica , Elementos Facilitadores Genéticos/genética , Humanos , Transdução de Sinais
20.
Nat Commun ; 12(1): 1680, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33723250

RESUMO

Branched-chain amino acids (BCAA) and their cognate α-ketoacids (BCKA) are elevated in an array of cardiometabolic diseases. Here we demonstrate that the major metabolic fate of uniformly-13C-labeled α-ketoisovalerate ([U-13C]KIV) in the heart is reamination to valine. Activation of cardiac branched-chain α-ketoacid dehydrogenase (BCKDH) by treatment with the BCKDH kinase inhibitor, BT2, does not impede the strong flux of [U-13C]KIV to valine. Sequestration of BCAA and BCKA away from mitochondrial oxidation is likely due to low levels of expression of the mitochondrial BCAA transporter SLC25A44 in the heart, as its overexpression significantly lowers accumulation of [13C]-labeled valine from [U-13C]KIV. Finally, exposure of perfused hearts to levels of BCKA found in obese rats increases phosphorylation of the translational repressor 4E-BP1 as well as multiple proteins in the MEK-ERK pathway, leading to a doubling of total protein synthesis. These data suggest that elevated BCKA levels found in obesity may contribute to pathologic cardiac hypertrophy via chronic activation of protein synthesis.


Assuntos
Aminoácidos de Cadeia Ramificada/metabolismo , Coração/fisiologia , Hemiterpenos/metabolismo , Cetoácidos/metabolismo , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Obesidade/metabolismo , Ratos , Valina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...